Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hydrido-sulfido-bridged triangular Os_{3} cluster compounds with different phosphine ligand substitution patterns

Ulrich Flörke,* Hans Egold and Markus Schraa

Fachbereich Chemie und Chemietechnik, Universität-GH Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
Correspondence e-mail: uf@chemie.uni-paderborn.de

Received 21 January 2000
Accepted 23 March 2000
In the course of our studies of trinuclear osmium cluster complexes with bridging sulfido and hydrido ligands, the new compounds $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{SR})(\mathrm{CO})_{9}\left(\mathrm{PHCy}_{2}\right)(\mathrm{Cy}=$ cyclohexyl) with $R=$ phenyl, (I) (nonacarbonyl- $1 \kappa^{3} C, 2 \kappa^{3} C, 3 \kappa^{3} C$-dicyclo-hexylphosphine-3 κP - μ-hydrido-1:2 $\kappa^{2} H$ - μ-phenylthio-1:2 $2 \kappa^{2} S$ -triangulo-triosmium), $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)(\mathrm{CO})_{9}\right]$, and $R=$ naphthyl, (II) [nonacarbonyl- $1 \kappa^{3} C, 2 \kappa^{2} C, 3 \kappa^{4} C$-dicyclohexyl-phosphine- $2 \kappa P-\mu$-hydrido-1:2 $\kappa^{2} H-\mu$-(2-naphthylthio) $-1: 2 \kappa^{2} S$ -triangulo-triosmium], $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)(\mathrm{CO})_{9}\right]$, were prepared. We report on these two phosphine-substituted complexes, which exhibit perceptible changes of the Os-Os bond parameters due to the ligand-substitution pattern.

Comment

Structure reports on triangular $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{S} R)(\mathrm{CO})_{10-n} L_{n}$ ($n=0$ or 1) compounds show rather differing patterns of OsOs distances, and the positions of the $\mu-\mathrm{H}$ atoms, though confirmed by spectroscopic methods, have not been determined (Adams \& Dawoodi, 1981; Brodie et al., 1983; Ditzel et al., 1987; Holden et al., 1983; Monari et al., 1996). We present here the structures of two similar compounds, (I) and (II), together with details of the $\mu-\mathrm{H}$ atoms.

(I)

(11)

The molecular structure of (I) (Fig. 1) depicts a triangular arrangement of the three Os atoms. Of these, Os2 and Os3 each have three terminal carbonyl groups and common bridging $\mu-\mathrm{H}$ and $\mu-\mathrm{S}$ atoms as ligands. The CO groups show an
ecliptic arrangement, with torsion angles $\mathrm{C} 5-\mathrm{Os} 2-\mathrm{Os} 3-\mathrm{C} 7$ -0.2 (5), C6-Os2-Os3-C8-2.2 (7) and C4-Os2-Os3C9 -6.4 (6) ${ }^{\circ}$. The third metal atom, Os1, has two axially and one equatorially attached CO group, as well as an equatorially positioned PHCy_{2} ligand. Considering two Os-Os bonds for each metal atom, Os1 thus achieves a sixfold distorted octahedral coordination, whereas the two bridged atoms (Os2 and Os3) have sevenfold coordination.

The $\mathrm{Os}_{2} \mu$-H and $\mathrm{Os}_{2} \mu$-S planes form a dihedral angle of $52.0(1)^{\circ}$, and the dihedral angles with the central Os_{3} ring are 73.7 (1) ${ }^{\circ}$ for the $\mathrm{Os}_{2} \mu$-S plane and $125.7(1)^{\circ}$ for $\mathrm{Os}_{2} \mu-\mathrm{H}$. Two edges, Os1-Os3 of 2.8678 (7) and Os2-Os3 of 2.8674 (7) A. are equal and clearly longer than the Os1-Os2 edge of 2.8382 (7) A. One of the long edges is bridged by the two $\mu-\mathrm{H}$ and μ-S ligands, and the short Os-Os edge has the PHCy_{2} ligand in the trans position.

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids. Phenyl and cyclohexyl H atoms have been omitted for clarity.

The sulfido bridge is symmetric, with equal $\mathrm{Os}-\mathrm{S}$ bond lengths of 2.412 (3) and 2.413 (3) \AA, and compares well with that known from the above-mentioned related Os_{3} clusters. The $\mathrm{S}-\mathrm{C}_{\text {phenyl }}$ distance of 1.803 (10) \AA is consistent with a single bond and the plane of the phenyl ring is nearly perpendicular to the Os_{3} plane at an angle of $85.0(1)^{\circ}$.

The molecular structure of (II) (Fig. 2) is closely related to that of (I) but with substitution of a naphthyl group rather than a phenyl group on the μ-S ligand. The deciding difference, however, is the position of the PHCy_{2} group, which is pseudo-trans to the bridged Os-Os bond and is attached to Os 2 . The $\mathrm{Os} 2-\mathrm{P}$ bond length of 2.345 (2) \AA is equal to that for (I) [2.342 (3) \AA] and the coordination geometry of (II) is almost the same as for (I), with torsion angles C5-Os2-Os3-C7 0.1 (4), C6-Os2-Os3-C8 1.3 (4) and P1-Os2-Os3-C9 9.9 (4).

The dihedral angle between the $\mathrm{Os}_{2} \mu-\mathrm{H}$ and $\mathrm{Os}_{2} \mu$-S planes is $47.3(1)^{\circ}$ and the dihedral angles between the Os_{3} ring and $\mathrm{Os}_{2} \mu-\mathrm{S}$ and $\mathrm{Os}_{2} \mu-\mathrm{H}$ planes are 77.1 (1) and $124.4(1)^{\circ}$, respectively. The $\mathrm{Os}-\mathrm{S}$ bond lengths of 2.423 (2) and 2.434 (2) A differ only slightly and $\mathrm{S}-\mathrm{C}_{\text {naphthyl }}$ is 1.798 (8) \AA. However, the Os_{3} ring geometry has changed, obviously due to the different substitution pattern of the metal atoms. In (II), there are two nearly equal but short bond lengths, Os1-Os3 2.8544 (6) \AA and Os2-Os3 2.8585 (5) \AA, and one long Os1Os2 edge of 2.8928 (5) \AA. This latter edge is now cis to the PHCy_{2} ligand at Os2.

Figure 2
The molecular structure of (II) showing 50% probability displacement ellipsoids. Naphthyl and cyclohexyl H atoms have been omitted for clarity.

The $\mu-\mathrm{H}$ atoms of (I) and (II) have been located from difference Fourier maps and refined. Both lie above the Os_{3} planes if the μ-S atoms are considered to lie below these planes. The mean Os -H bond lengths are 1.86 (8) \AA for (I) and 1.70 (12) \AA for (II).

The coordination geometry of (II) is just the same as for $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{SPh})(\mathrm{CO})_{9}\left(\mathrm{PEt}_{3}\right)$, (III) (Ditzel et al., 1987), but in this complex, there are two long [2.883 (1) and 2.901 (1) \AA] and one short [2.862 (1) \AA] Os-Os edge. The short edge is between the two Os atoms which are not coordinated by the phosphine group and this ligand is pseudo-trans to the bridged Os-Os edge. The same order of long and short Os-Os edges [2.873 (1), 2.880 (1) and 2.855 (1) \AA] is valid for the compound $\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$, (IV) (Adams \& Pompeo, 1992), but here the phosphine ligand is cis to the $\mu-\mathrm{H}-\mu$-S bridged Os-Os edge.

In summary, these four phosphine-substituted cluster complexes each have in common two equal and one significantly different Os-Os edge. The accompanying bond-length differences range from $0.015 \AA$ for (IV) to $0.032 \AA$ for (II), taking the reported s.u.'s into account. There is, however, no clear conjunction between the substitution pattern and the sequence of $\mathrm{Os}-\mathrm{Os}$ bonds. Related unsubstituted Os_{3} carbonyl compounds exhibit almost equal bond lengths for all three $\mathrm{Os}-\mathrm{Os}$ edges, e.g. $\mathrm{Os}_{3}(\mu-\mathrm{H})\left[\mu-\mathrm{SC}(\mathrm{H}) \mathrm{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right]-$ $(\mathrm{CO})_{10}$ (Adams \& Dawoodi, 1981) with a bond difference, Δ, of $0.003 \AA, \quad \mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{SC}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)(\mathrm{CO})_{10} \quad(\Delta=$ 0.002 Å; Brodie et al., 1983), $\mathrm{Os}_{3}(\mu-\mathrm{H})\left[\mu-\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right](\mathrm{CO})_{10}$ $\left(\Delta=0.004 \AA\right.$; Monari et al., 1996), and $\mathrm{Os}_{3}(\mu-\mathrm{H})$ -$\left[\mu-\mathrm{SC}\left(\mathrm{HPh}_{2}\right)\right](\mathrm{CO})_{10}(\Delta=0.008 \AA$ A ; Holden et al., 1983).

Experimental

$\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{SPh})(\mathrm{CO})_{10}(90 \mathrm{mg}, \quad 0.094 \mathrm{mmol})$ or $\mathrm{Os}_{3}(\mu-\mathrm{H})[\mu-\mathrm{S}-$ (2-naphthyl)](CO) ${ }_{10}(95 \mathrm{mg}, 0.094 \mathrm{mmol})$ were dissolved in a mixture of dichloromethane (15 ml) and acetonitrile (1 ml) under an argon atmosphere. Trimethylamine N-oxide (9 mg) was then added. After 1 h , the solvent was removed under reduced pressure and the crude
material was purified by thin-layer chromatography (eluent: di-chloromethane- n-hexane, 1:10). The resulting product fractions contained a mixture of four isomers of $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{SR})(\mathrm{CO})_{9}-$ $\left(\mathrm{PHCy}_{2}\right)$ ($R=\mathrm{Ph}$ or naphthyl). Upon crystallization from n-pentane in both cases, single crystals of (I) and (II) were obtained.

Compound (I)

Crystal data
$\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)(\mathrm{CO})_{9}\right.$]
$M_{r}=1131.13$
Monoclinic, $C 2 / c$
$a=20.893$ (3) A
$b=9.010(2) \AA$
$c=33.399$ (5) \AA
$\beta=91.04$ (1) ${ }^{\circ}$
$V=6286.2(19) \AA^{3}$
$Z=8$
$D_{x}=2.390 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23

reflections

$\theta=14.45-37.96^{\circ}$
$\mu=12.263 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Block, yellow
$0.27 \times 0.14 \times 0.08 \mathrm{~mm}$
Data collection
Siemens $P 4$ diffractometer ω scans
Absorption correction: ψ scan
$T_{\text {min }}=0.146, T_{\text {max }}=0.375$

$$
R_{\mathrm{int}}=0.047
$$

$$
\theta_{\max }=27.5^{\circ}
$$

$$
h=-27 \rightarrow 1
$$

(North et al., 1968)

$$
k=-1 \rightarrow 11
$$

8816 measured reflections
7221 independent reflections
4147 reflections with $I>2 \sigma(I)$
$l=-43 \rightarrow 43$
3 standard reflections every 397 reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0145 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$(\Delta / \sigma)_{\max }=0.001$
$w R\left(F^{2}\right)=0.077$
$S=0.924$
7221 reflections
376 parameters
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.91 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

Os1-P1	$2.342(3)$	Os3-S1	$2.412(3)$
Os1-Os2	$2.8382(7)$	S1-C31	$1.803(10)$
Os1-Os3	$2.8678(7)$	Os2-H2	$1.86(8)$
Os2-S1	$2.413(3)$	Os3-H2	$1.85(8)$
Os2-Os3	$2.8674(7)$	P1-H1	$1.54(10)$
P1-Os1-Os2	$160.59(7)$	Os1-Os2-Os3	$60.344(18)$
P1-Os1-Os3	$100.43(7)$	S1-Os3-Os2	$53.56(7)$
Os2-Os1-Os3	$60.332(18)$	S1-Os3-Os1	$83.72(7)$
S1-Os2-Os1	$84.34(7)$	Os2-Os3-Os1	$59.324(17)$
S1-Os2-Os3	$53.52(7)$	Os3-S1-Os2	$72.92(8)$

Compound (II)

Crystal data

$\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)(\mathrm{CO})_{9}\right]$	$Z=2$
$M_{r}=1181.19$	$D_{x}=2.265 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.214(2) \AA$	Cell parameters from 29
$b=12.997(2) \AA$	reflections
$c=14.409(1) \AA$	$\theta=14.60-34.89^{\circ}$
$\alpha=69.16(1)^{\circ}$	$\mu=11.132 \mathrm{~mm}^{-1}$
$\beta=80.58(1)^{\circ}$	$T=203(2) \mathrm{K}$
$\gamma=76.62(1)^{\circ}$	Block, yellow
$V=1732.2(4) \AA^{\circ}$	$0.50 \times 0.15 \times 0.13 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer

ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.126, T_{\text {max }}=0.235$
9107 measured reflections
7794 independent reflections
6138 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.104$
$S=1.029$
7794 reflections
413 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-1 \rightarrow 13$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 18$
3 standard reflections every 397 reflections intensity decay: 4\%
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0618 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.99 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.91 \mathrm{e}^{-3}$
Extinction correction: SHELXTL/
$N T$ (Siemens, 1995)
Extinction coefficient: 0.00020 (14)

Table 2
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

Os1-Os3	$2.8544(6)$	Os3-S1	$2.423(2)$
Os1-Os2	$2.8928(5)$	S1-C31	$1.798(8)$
Os2-P1	$2.345(2)$	P1-H1	$1.42(10)$
Os2-S1	$2.434(2)$	Os2-H2	$1.70(11)$
Os2-Os3	$2.8585(5)$	Os3-H2	$1.70(12)$
Os3-Os1-Os2	$59.650(14)$	Os3-Os2-Os1	$59.509(14)$
P1-Os2-S1	$95.91(7)$	S1-Os3-Os1	$82.68(5)$
P1-Os2-Os3	$140.40(6)$	S1-Os3-Os2	$54.12(5)$
S1-Os2-Os3	$53.76(5)$	Os1-Os3-Os2	$60.842(14)$
P1-Os2-Os1	$94.91(6)$	Os3-S1-Os2	$72.12(6)$
S1-Os2-Os1	$81.68(5)$		

For both structures, the phosphine H atoms as well as the bridging H atoms were located from difference Fourier maps. Their positional parameters were refined and the isotropic displacement parameters were held fixed. Phenyl, cyclohexyl and naphpthyl H atoms were fixed at idealized positions. Refinement used a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum residual electron-density peak in (I) was $1.2 \AA$ from H36, while that in (II) was $1.0 \AA$ from Os1.

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: $S H E L X T L / N T$ (Siemens, 1995); program(s) used to refine structure: SHELXTL/NT; molecular graphics: SHELXTL/NT; software used to prepare material for publication: SHELXTL/NT.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1077). Services for accessing these data are described at the back of the journal.

References

Adams, R. D. \& Dawoodi, Z. (1981). J. Am. Chem. Soc. 103, 6510-6512.
Adams, R. D. \& Pompeo, M. P. (1992). Organometallics, 11, 2281-2289.
Brodie, A. M., Holden, H. D., Lewis, J. \& Taylor, M. J. (1983). J. Organomet. Chem. 253, C1-4.
Ditzel, E. J., Gomez-Sal, M. P., Johnson, B. F. G., Lewis, J. \& Raithby, P. R. (1987). J. Chem. Soc. Dalton Trans. pp. 1623-1630.

Holden, H. D., Johnson, B. F. G., Lewis, J., Raithby, P. R. \& Uden, G. (1983). Acta Cryst. C39, 1200-1203.
Monari, M., Pfeiffer, R., Rudsander, U. \& Nordlander, E. (1996). Inorg. Chim. Acta, 247, 131-134.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SHELXTL/NT. Version 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

